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Competing species with Lotka-Volterra dynamics

Population dynamics of single species

u(t): total population at time t

Logistic growth: u′(t) = u(a− bu), u(0) = u0 > 0.
a: carrying capacity
b: crowing effect
u(t)→ a

b exponentially as t →∞

Population growth model: u′(t) = f (u, t)u, u(0) = u0 > 0.
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Competing species with Lotka-Volterra dynamics

Population dynamics of two competing species

u(t): total population of focal species at time t
v(t): total population of competing species at time t{

ut = f (u, v), t > 0,
vt = g(u, v), t > 0,

f ,g: growth rate

Competition relationship (inter-specific competition)

f : decreasing in v
g: decreasing in u

Crowing effect (intra-specific competition)
f : increasing in u for small u, decreasing for large u
g: increasing in v for small v , decreasing for large v
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Competing species with Lotka-Volterra dynamics

Lotka-Volterra Competition model

{
ut = (a1 − b1u − c1v)u, t > 0,
vt = (a2 − b2u − c2v)v , t > 0,

a1,a2 > 0: carrying capacity
b1, c2 > 0: intra-specific competition rate
b2, c1 > 0: inter-specific competition rate

Four equilibria

(0,0), (a1
b1
,0), (0, a2

c2
) and (ū, v̄) =

(
a1c2−a2c1
b1c2−b2c1

, a2b1−a1b2
b1c2−b2c1

)
(ū, v̄) is positive if and only if one of the followings

c1
c2
< a1

a2
< b1

b2
:

b1
b2
< a1

a2
< c1

c2
:
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Competing species with Lotka-Volterra dynamics

Lotka-Volterra competition model with species dispersals

Ω: bounded domain in RN , N ≥ 1
u(x , t): population density at space-time location (x , t)
v(x , t): population density at space-time location (x , t)

Diffusive Lotka-Volterra Competition model
ut = D1∆u + (a1 − b1u − c1v)u, x ∈ Ω, t > 0,
vt = D2∆v + (a2 − b2u − c2v)v , x ∈ Ω, t > 0,
∂u
∂n = ∂v

∂n = 0, x ∈ ∂Ω, t > 0,
u(x ,0) = u0(x) ≥ 0, v(x ,0) = v0(x) ≥ 0, x ∈ Ω.

Species disperse within an enclosed habitat (NBC)
D1, D2: species dispersal rate (positive)
No population pressure from inter-species (random
dispersal)
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Competing species with Lotka-Volterra dynamics

Lotka-Volterra competition model with species dispersals

Diffusive Lotka-Volterra Competition model
ut = D1∆u + (a1 − b1u − c1v)u, x ∈ Ω, t > 0,
vt = D2∆v + (a2 − b2u − c2v)v , x ∈ Ω, t > 0,
∂u
∂n = ∂v

∂n = 0, x ∈ ∂Ω, t > 0,
u(x ,0) = u0(x) ≥ 0, v(x ,0) = v0(x) ≥ 0, x ∈ Ω.

Large diffusion rates:
P. de Mottoni, F. Rothe, 1979: No nonconstant steady
states if both D1 and D2 are large;
J. Smoller, 1984: Behave like the ODEs if both D1 and D2
are large;
Y. Lou, W.-M. Ni, 1996: No nonconstant steady state if
one of D1 and D2 is large;
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Competing species with Lotka-Volterra dynamics

Effect of diffusion rates

Weak competition case: completely understood
(E. Conway, D. Hoff, J. Smoller, 1978; P.De Mottoni,
1979): In the weak competition case, (ū, v̄) is
asymptotically stable in the sense that for any solution
(u(x , t), v(x , t))

lim t →∞‖(u(·, t), v(·, t))− (ū, v̄))‖∞ ≤ Ceµt ,

C > 0: regardless of the initial conditions and the size of
D1 and D2

µ: principal eigenvalue of Neumann Laplacian
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Competing species with Lotka-Volterra dynamics

Effect of diffusion rates

Strong competition case: complicated with interesting
phenomena

Kishimoto, 1981: No nonconstant stable steady states, if
is a rectangular parallelepiped in RN , N ≥ 1.
Kishimoto, Weinberger, 1985: No nonconstant stable
steady states, if Ω is a convex domain in RN , N ≥ 1.
Matano, Mimura, 1983: Nonconstant positive steady
state, if Ω is of dumbbell shape, with D1 and D2 being
taken properly.
M. Mimura, S. Ei, Q. Fang, 1991: Nonconstant positive
steady state, if Ω is of dumbbell shape with a very narrow
bar.
Y. Kan-on, E. Yanagida, 1993: Nonconstant positive
steady state, if the curvature of the boundary and the
diffusion rates D1 and D2 are properly balanced.
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Competing species with Lotka-Volterra dynamics

System with advected species dispersal

In summary
Introduction of diffusions into the Lotka-Volterra ODE
competition model will not induce nonconstant steady
states in almost all cases, at least when Ω is convex.
Not entirely realistic to assume that species moves
randomly
Dispersal pressure from inter- and intra-species

ut = ∇ · (D1∇u + χ1Φ1(u, v)∇v) + f (u, v), x ∈ Ω, t > 0,
vt = ∇ · (D2∇v + χ2Φ2(u, v)∇u) + g(u, v), x ∈ Ω, t > 0,
u(x ,0) = u0(x) ≥ 0, v(x ,0) = v0(x) ≥ 0, x ∈ Ω,

f ,g: Lotka-Volterra dynamics
χ1, χ2: constant
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Competing species with Lotka-Volterra dynamics

System with advected species dispersal


ut = ∇ · (D1∇u + χuφ(v)∇v) + (a1 − b1u − c1v)u,
τvt = D2∆v + (a2 − b2u − c2v)v ,
∂u
∂n = ∂v

∂n = 0,
u(x ,0) = u0(x) ≥ 0, v(x ,0) = v0(x) ≥ 0,

(1)

Global existence
Nonconstant steady states
Transition-layered steady states
Segregation phenomenon
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Competing species with Lotka-Volterra dynamics

Derivation of advective Lotka-Volterra competition model


ut = ∇ · (D1∇u + χ1Φ1(u, v)∇v) + f (u, v), x ∈ Ω, t > 0,
vt = ∇ · (D2∇v + χ2Φ2(u, v)∇u) + g(u, v), x ∈ Ω, t > 0,
u(x ,0) = u0(x) ≥ 0, v(x ,0) = v0(x) ≥ 0, x ∈ Ω,

Conservation of total population of species u leads to the
transport equation

ut = −∇ · J + f , (2)

J: the total population flux
f : the birth-death rate of the species

J: superposition of the diffusion flux Jdiffusion from random
walks and the competition flux Jcompetition due to the
interspecific population pressure
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Competing species with Lotka-Volterra dynamics

Derivation of advective Lotka-Volterra competition model

Total flux
J=Jdiffusion + Jcompetition

Jdiffusion = −D2∇u: Fick’s law
Jcompetition = −χ1Φ1(u, v)∇v : density dependent
competition flux

χ1 > 0 if u escapes the habitat of v and χ1 < 0 if u invades the
habitat of v

ut = ∇ · (D1∇u + χ1Φ1(u, v)∇v) + f (u, v)

Keller-Segel Chemotaxis model
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Competing species with Lotka-Volterra dynamics

SKT Lotka-Volterra competition model

Shigesada, Kawasaki and Teramoto proposed the following
system in 1979

ut = ∆[(D1 + ρ11u + ρ12v)u] + (a1 − b1u − c1v)u, x ∈ Ω, t > 0,
vt = ∆[(D2 + ρ21u + ρ22v)v ] + (a2 − b2u − c2v)v , x ∈ Ω, t > 0,
∂u
∂n = ∂v

∂n = 0, x ∈ ∂Ω, t > 0,
u(x ,0) = u0(x) ≥ 0, v(x ,0) = v0(x) ≥ 0, x ∈ Ω,

where ρi,j , i , j = 1,2, are nonnegative constants.
ρ11, ρ22: self-diffusions, the dispersal pressures due to the
presence of conspecifics
ρ12, ρ21: cross-diffusions, the dispersal pressures from the
interspecific competitors.
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Competing species with Lotka-Volterra dynamics

SKT Lotka-Volterra competition model

Written into
ut = ∇ · [(D1 + 2ρ11u + ρ12v)∇u + ρ12u∇v ] + f (u, v), x ∈ Ω, t > 0,
vt = ∇ · [(D2 + ρ21u + 2ρ22v)∇v + ρ21v∇u] + g(u, v), x ∈ Ω, t > 0,
∂u
∂n = ∂v

∂n = 0, x ∈ ∂Ω, t > 0,
u(x ,0) = u0(x) ≥ 0, v(x ,0) = v0(x) ≥ 0, x ∈ Ω.

invading if ρ12, ρ21 < 0
negative diffusion rate
systematic approach
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Global existence and boundedness


ut = ∇ · (D1∇u + χuφ(v)∇v) + (a1 − b1u − c1v)u,
τvt = D2∆v + (a2 − b2u − c2v)v ,
∂u
∂n = ∂v

∂n = 0,
u(x ,0) = u0(x) ≥ 0, v(x ,0) = v0(x) ≥ 0,

(3)

Theorem
Existence of uniformly bounded classical solutions

C, Gai, W, J. Yan, 2014: 1D; 2D if τ = 0 and b1D2
b2χ

is large
W, (preprint): 2D; ND, N ≥ 3φ(v) decays super-linearly
Blow-up or global existence when N is large: Open
problem
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Steady states in 1D


(D1u′ + χuφ(v)v ′)′ + (a1 − b1u − c1v)u = 0, x ∈ (0,L),
D2v ′′ + (a2 − b2u − c2v)v = 0, x ∈ (0,L),
u′(x) = v ′(x) = 0, x = 0,L.

(4)

1 Nonconstant positive steady states
2 Stability of the nonconstant positive solutions
3 Striking structures: Segregation phenomenon
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Stability analysis of homogeneous equilibrium


ut = (D1u′ + χuφ(v)v ′)′ + (a1 − b1u − c1v)u, x ∈ (0,L), t > 0,
vt = D2v ′′ + (a2 − b2u − c2v)v , x ∈ (0,L), t > 0,
u(x ,0) = u0(x), v(x ,0) = v0(x), x ∈ (0,L),
u′(x) = v ′(x) = 0, x = 0,L, t > 0.

Theorem
(ū, v̄) is unstable if

χ > χ0 = min
k∈N+

(
D1(kπ

L )2 + b1ū
)(

D2(kπ
L )2 + c2v̄

)
− b2c1ūv̄

b2(kπ
L )2φ(v̄)ūv̄

.

Holds in RN , N ≥ 2 if replacing (kπ
L )2 by k-th Laplacian

eigenvalue
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Stability analysis of homogeneous equilibrium
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Existence of nonconstant positive steady states

Crandall-Rabinowitz bifurcation theory.

Theorem

Denote χk =

(
D1( kπ

L )2+b1ū
)(

D2( kπ
L )2+c2v̄

)
−b2c1ūv̄

b2( kπ
L )2φ(v̄)ūv̄

, and assume that

χi 6= χj , ∀i 6= j ∈ N+. Then Bifurcation occurs at (ū, v̄ , χk ) for
each k ∈ N+, hence there exists nonconstant positive steady
state (uk (s, x), vk (s, x), χk (s)) around (ū, v̄ , χk ) such that,{

χk (s) = χk + O(s),

(uk (s, x), vk (s, x)) = (ū, v̄) + s(Qk ,1) cos kπx
L + o(s)

with Qk = −D2( kπ
L )2+c2v̄
b2v̄ ; moreover, all nontrivial steady states

near the bifurcation point (ū, v̄ , χk ) must stay on the curve
Γk (s) = (uk (s), vk (s), χk (s)), s ∈ (−δ, δ).
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Existence of nonconstant positive steady states
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Stability of bifurcating steady states

Theorem

Suppose that χk0 = mink∈N+ χk , then
(i). (uk (s, x), vk (s, x)), s ∈ (−δ, δ), is unstable around (ū, v̄ , χk )
for all positive integers k 6= k0;
(ii). χ′k0

(0) = 0; (uk0(s, x), vk0(s, x)) is stable (ū, v̄ , χk0) if
χ′′k0

(0) > 0 and is unstable if χ′′k0
(0) < 0.

pitch-fork bifurcation
turning direction: stability
local bifurcation
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Stability of bifurcating steady states
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Wavemode selection mechanism

(ū, v̄) loses its stability to (Qk0 ,1) cos k0πx
L as χ surpasses

χ0 = mink∈N+ χk

χk ≈
D1D2( kπ

L )2

b2φ(v̄)ūv̄ , k0 = 1 if L is small

k0 increases if L increases
small domain only supports monotone stable solutions,
while large domain supports non-monotone stable
solutions.
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Wavemode selection mechanism

Domain size L 3 5 7 9 11
k0 1 2 2 3 3
χk 9.9418 10.392 9.9120 9.9418 9.9647

Domain size L 13 15 17 19 21
k0 4 5 5 6 6
χk 9.8872 9.9418 9.8937 9.8956 9.9120

Table: Stable wavemode numbers and their bifurcation values.
D1 = 1,D2 = 0.1,a1 = a2 = 0.5,b1 = 2,b2 = 1 and c1 = 0.5, c2 = 1.
We see that larger domains support bigger wavemode number.
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Wavemode selection mechanism

Figure: Stable wave mode in the form of cos k0πx
L , where k0 is given

in Table 1. χ is chosen to be slightly larger than χ0 and the rest
system parameters are chosen to be the same as in Table 1. Initial
data are small perturbations of (ū, v̄).
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Wavemode selection mechanism

Ω = (0,L)× (0,L), the wavemode is cos mπx
L cos nπy

L

Domain size L 1 3 5 7 9
(m0,n0) (1,1) (1,1) (1,1) (1,2), (2,1) (2,2)
χm0n0 42.2066 11.2318 9.9210 9.9022 9.8934

Domain size L 11 13 15 17 19
(m0,n0) (1,4), (4,1) (2,4), (4,2) (1,5), (5,1) (3,5), (5,3) (4,5), (5,4)
χm0n0 9.8979 9.8889 9.8876 9.8869 9.8864

Table: List of bifurcation values χmn over Ω = (0,L)× (0,L) for
different values of L. System parameters are chosen to be
D1 = 1,D2 = 0.1, a1 = a2 = 0.5,b1 = 2,b2 = 1, c1 = 0.5, c2 = 1

.
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Wavemode selection mechanism

Figure: Stable patterns of u and v corresponding to the stable
wavemode cos m0πx

L cos n0πy
L . System parameters are chosen to be

the same as in Table 2 and χ is slightly larger than χm0n0 . Initial data
are small perturbations of (ū, v̄).
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Transition-layer solutions


(D1u′ + χuφ(v)v ′)′ + (a1 − b1u − c1v)u = 0, x ∈ (0,L),
D2v ′′ + (a2 − b2u − c2v)v = 0, x ∈ (0,L),
u′(x) = v ′(x) = 0, x = 0,L.

Bifurcating solution: small amplitude solutions
Existence of positive solutions with striking properties
Segregation phenomenon
Large advection rate and small diffusion rate
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Transition-layer solutions

Let r = χ
D1

, D2 = ε, φ(v) ≡ 1 and b1 → 0 as ε→ 0.
D1(u′ + ruv ′)′ + (a1 − b1u − c1v)u = 0, x ∈ (0,L),
εv ′′ + (a2 − b2u − c2v)v = 0, x ∈ (0,L),
u′(x) = v ′(x) = 0, x = 0,L.

Theorem

Let r = χ
D1
∈ ( c1

a1
ln a2c1

a2c1−a1c2
,∞) be fixed. For any ε > 0 being

small, we can find D̄ > 0 large such that if D1 > D̄, there always
exists a nonconstant positive solution (u, v). Moreover, as
D1 →∞, (u(x), v(x)) converges to (λεe−rvε(x), vε(x)) uniformly
in [0,L], where λε is a positive constant and λε → (a2−c2v̄2)er v̄2

b2
as ε→ 0; vε(x) is a positive function of x and vε(x)→ v̄2
compact uniformly on [0, x0) and vε(x)→ 0 compact uniformly
on (x0,L], where x0 = a1L

a1−(a1−c1v̄2)e−r v̄2
.
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b2
as ε→ 0; vε(x) is a positive function of x and vε(x)→ v̄2
compact uniformly on [0, x0) and vε(x)→ 0 compact uniformly
on (x0,L], where x0 = a1L

a1−(a1−c1v̄2)e−r v̄2
.
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Transition-layer solutions

both u and v have interior transition layer and they
segregate
x0 hence v̄ are arbitrarily given (infinitely many transition
layers)
x0 decreases as v̄
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Transition-layer solutions

Figure: Spatial-temporal behaviors of the population densities.
D1 = 10, χ = 100, D2 = 0.1. The rest parameters are chosen to be
the same as in Figure 3. Initial data are small perturbations of (ū, v̄).
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Spiky solutions

Figure: Formation of stable and multi-spikes over Ω = (0,L).
Numerical simulations suggest that large domains support more
stable spikes than small domains.
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Summmary

1 Lotka-Volterra competition model with advection
2 Global existence in 1D (2D and ND with some conditions)
3 Existence and stability of nonconstant positive steady

states
4 Wavemode selection mechanism
5 Transition layer solutions
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Open problems

1 Global existence and boundedness in ND; blow-ups?
2 Stability of the interior or boundary layers
3 Large-time behavior? Lyapunov functional
4 Travelling wave? Pattern formation
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